
Grant Agreement No.: 101096342

Call: HORIZON-JU-SNS-2022

Topic: HORIZON-JU-SNS-2022-STREAM-B-01-04

Type of action: HORIZON-JU-RIA

D5.2 First HORSE Release: HORSE IT-1
version

Revision: v.1.0

Work package WP 5

Task Task 5.2

Due date 30/06/2024

Submission date 30/06/2024

Deliverable lead TUBS

Version 1.0

Authors Iulisloi Zacarias (TUBS); Admela Jukan (TUBS); Chukwuemeka Muonagor
(TUBS); Paulo Paixão (EFACEC); Pedro Elisio (EFACEC); Eva Rodriguez
Luna (UPC); Fabrizio Granelli (CNIT); Alice Piemontti (MAR); Jose Manuel
Manjón (TID); Orazio Toscano (ETI); Eduardo Canovas Martinez (UMU);
Stefanos Venios (S5); Manuel Angel Jiménez Quesada (ATOS); Josep
Martrat (ATOS); Rodrigo Diaz Rodriguez (ATOS); Alexandros Dimos
(8BELLS); Sofia Giannakidou (STS); Panagiotis Trakadas (NKUA);
Nikolaos Nomikos (NKUA); Panagiotis Gkonis (NKUA)

Reviewers Fabrizio Granelli (CNIT), Charalampos Skianis (8BELLS)

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 2 of 66 © 2023-2025 HORSE

Abstract

This document presents the initial release of the HORSE cybersecurity
platform, designed to enhance the security of 5G/6G networks. It provides
a detailed account of the development, integration, and testing of the
modules composing the first release of the HORSE platform. The document
outlines the methodologies employed in system integration tests,
showcases practical applications through demonstrators, and presents the
components and interfaces that the demonstrator validates. Additionally,
each demonstrator description includes a matrix assessing the interactions
and status of the integration tests. The demonstrators were carefully
designed to validate the designed components via functional tests and
ensure the components' integration was handled correctly. Additionally, a
glance at Key Performance Indicators (KPIs) that will be used in the
validation phase of the next HORSE iteration (IT-2) is presented.

Keywords Functional Validation; Integration; Cybersecurity; Mobile Networks

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 3 of 66 © 2023-2025 HORSE

DOCUMENT REVISION HISTORY

Version Date Description of change List of contributor(s)

V0.1 20/09/2022 1st version of the template for comments Miguel Alarcón (Martel)

V0.1.1 06/05/2024 Preliminary version of the Table of
Contents

Iulisloi Zacarias (TUBS)

V0.1.2 09/05/2024 Updates in the Table of Contents Paulo Paixão (EFACEC)

V0.2 16/05/2024 Updates in the Table of Contents and
new sections for version control of the
modules

Iulisloi Zacarias (TUBS)

V0.3.1 21/05/2024 Discussions about the structure of the
document.

ALL

V0.3.2 24/05/2024 Updates in the Table of Contents and
reorganization of contents following the
discussions in the General Assembly on
21/05/2024.

Iulisloi Zacarias (TUBS)

V0.4.0 03/06/2024 Adding Integration Matrix and
components integration

Eva Rodriguez Luna (UPC)

V0.4.1 12/06/2024 Adding Prevention DT description Fabrizio Granelli (CNIT)

V0.4.2 14/06/2024 Contribution to Section 2 ALL

V0.4.3 14/06/2024 Contributions to Section 4 ETI, TID, TUBS, CNIT, ATOS,
NKUA

V0.4.4 18/06/2024 Update Annex A with KPI definitions

collected from partners in particular from

EFACEC and Ericsson

Paulo Paixão, Pedro Elísio; Orazio
Toscano

V0.4.5 19/06/2024 Contribution to Section 3 Eduardo Canovas Martinez (UMU)

V0.4.6 19/06/2024 Updates in the validation matrix and

system integration test. Compliance

matrix.

Eva Rodriguez Luna (UPC) and
Josep Martrat (ATOS)

V0.5 20/06/2024 Initial formatting and harmonization of the

document

Iulisloi Zacarias (TUBS)

V0.6 23/06/2024 Version ready for internal review Iulisloi Zacarias (TUBS)

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 4 of 66 © 2023-2025 HORSE

V0.7 24/06/2024 Internal review process Charalampos Skianis (8BELLS),
Fabrizio Granelli (CNIT)

V0.8 28/06/2024 Version ready for quality assessment Iulisloi Zacarias (TUBS)

V1.0 28/06/2024
Quality assessment and final version to
be submitted.

Fabrizio Granelli (CNIT)

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 5 of 66 © 2023-2025 HORSE

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the other granting
authorities. Neither the European Union nor the granting authority can be held responsible for
them.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 6 of 66 © 2023-2025 HORSE

Copyright notice

© 2023 - 2025 HORSE Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: OTHER

Dissemination Level

PU Public, fully open, e.g. web X

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
DATA: Data sets, microdata, etc
DMP: Data management plan
ETHICS: Deliverables related to ethics issues.
SECURITY: Deliverables related to security issues
OTHER: Software, technical diagram, algorithms, models, etc.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 7 of 66 © 2023-2025 HORSE

Executive summary

This document presents a comprehensive account of the initial release of the HORSE
cybersecurity platform, a solution designed to enhance the security of 5G/6G networks. It is
supposed to accompany the software release of components in the HORSE project and guide
the reader through the code available on the GitHub platform. Additionally, it details the
development, integration, and testing of the modules composing the HORSE platform's first
release. This document outlines the methodologies employed in system integration tests,
showcases practical applications through demonstrators, and provides a validation matrix to
assess the interactions and performance of the integrated components. The integration matrix
shows the current state of the integration. Additionally, it demonstrates the ability of HORSE
partners to link the developed components in line with modular, yet highly integrated
architecture foreseen in the beyond 5G landscape. The document follows by proposing five
demonstrators that aim to validate the components against the proposed workflow for
preventing, detecting, and mitigating network threats. For each demonstrator, a set of
integration tests is described together with their expected input/output to ensure
straightforward end-to-end integrations of modules. Finally, Annex A provides a first thought
on Key Performance Indicators (KPIs) that will be used by the HORSE project to evaluate the
platform's performance in future iterations.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 8 of 66 © 2023-2025 HORSE

Table of contents

DOCUMENT REVISION HISTORY ..3

Disclaimer ...5

Copyright notice ...6

Executive summary ..7

Table of contents ..8

List of figures ... 10

List of tables ... 11

Abbreviations ... 12

1 Introduction ... 14

1.1 Purpose of the document ... 14

1.2 Relation to other HORSE deliverables and project work ... 14

1.3 Structure of the document .. 15

2 List of Modules Included HORSE Release 1 ... 16

2.1 Smart Monitoring .. 16

2.2 Pre-Processing ... 17

2.3 Prediction and Prevention Digital Twin .. 17

2.4 Impact Analysis Digital Twin .. 18

2.5 Early Modelling ... 18

2.6 Policies and Data Governance .. 19

2.7 Detector and Mitigation Engine .. 19

2.8 Common Knowledge Database ... 20

2.9 Distributed Trustable AI Engine ... 21

2.10 Intent-based Interface .. 21

2.11 Reliability, Trust and Resilience ... 22

2.12 End-to-End Secure Connectivity Manager... 22

2.13 Domain Orchestrator Connectors .. 23

3 System Integration Tests ... 24

3.1 Continuous Integration and Methodology .. 24

3.1.1 Integration testing ... 24

3.1.2 Unit testing vs Integration testing ... 24

3.1.3 Integration Tests Approaches .. 25

3.1.4 Selected Integration Test Approach for HORSE Project ... 25

3.2 Horse Integration Workflow .. 26

3.3 Requirements For Integration .. 27

3.4 Assets Provided by the Integration Plan .. 28

3.5 Example Continuous Integration Testing (ePEM and RTR) .. 28

3.5.1 Changes in ePEM and RTR files ... 28

3.5.2 Integration Tests .. 30

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 9 of 66 © 2023-2025 HORSE

3.6 GitHub Actions (Core framework for HORSE-CI/CD) .. 30

3.6.1 Key Components of GitHub Actions Workflow... 31

3.6.2 Secrets in GitHub ... 31

3.7 Explanation of the rtr.yml Workflow for Building the RTR Image 31

3.8 Explanation of the rtr.yml Workflow for Integrating and Testing RTR and ePEM 33

3.8.1 Workflow Triggers .. 33

3.9 GitHub Actions Workflow Chart ... 36

3.10 Description of the Demonstrators and Functional Validation ... 36

4 HORSE Framework Validation Matrix .. 38

4.1 Detection and mitigation of DDoS attack over NTP or DNS services 39

4.2 Use of Network Digital Twin to assess the impact of DDoS mitigation actions 41

4.3 Enforcement of Mitigation Actions over a Multi-domain Infrastructure 43

4.4 Prediction of Attacks using a Network Digital Twin .. 46

4.5 Using the Distributed Trustable Engine to detect PFCP attacks (NKUA) 49

4.5.1 Testbed and Context Environment .. 50

4.5.2 Innovations Presented in the Demo ... 51

4.6 Compliance Matrix for HORSE Iteration IT1 .. 53

5 Conclusion .. 58

6 References .. 59

Annex A .. 60

Annex B ..62

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 10 of 66 © 2023-2025 HORSE

List of figures

Figure 1: The HORSE architecture ... 16

Figure 2: Integration workflow proposed for the HORSE Project .. 26

Figure 3: GitHub Actions workflow chart ... 36

Figure 4: DNS/NTP Attack on the CNIT testbed ... 39

Figure 5: Demonstrator 1 Workflow ... 40

Figure 6: Demonstrator 2 Workflow ... 42

Figure 7: Demonstrator 3 Workflow ... 44

Figure 8: Deployment of the demonstrator in a mutli-cluster environment on the UMU Testbed 46

Figure 9: Demonstrator 4 Workflow ... 47

Figure 10: The three-step process of the PFCP attack demonstrator .. 49

Figure 11: Test-bed architecture for the PFCP attacks demonstrator .. 50

Figure 12: Demonstrator 5 Workflow ... 52

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 11 of 66 © 2023-2025 HORSE

List of tables

Table 1: Integration approaches .. 25

Table 2: Status of integration tests for HORSE framework version 1.0 .. 37

Table 3: HORSE Framework intermediate release (IT-1) validation matrix .. 38

Table 4: HORSE components integration endpoints – Demonstrator 1 ... 41

Table 5: HORSE framework interactions testing - Demonstrator 1... 41

Table 6: HORSE components integration endpoints - Demonstrator 2 .. 43

Table 7: HORSE framework interactions testing - Demonstrator 2... 43

Table 8: HORSE components integration endpoints - Demonstrator 3 .. 45

Table 9: HORSE framework interactions testing - Demonstrator 3... 45

Table 10: HORSE components integration endpoints – Demonstrator 4 ... 48

Table 11: HORSE framework interactions testing - Demonstrator 4 .. 48

Table 12: HORSE components integration endpoints - Demonstrator 5 .. 52

Table 13: HORSE framework interactions testing - Demonstrator 5 .. 53

Table 14: Compliance matrix between the functional requirements and functional validation 57

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 12 of 66 © 2023-2025 HORSE

Abbreviations

5G Fifth Generation of Mobile Networks

6G Sixth Generation of Mobile Networks

AI Artificial Intelligence

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

cKB Common Knowledge Base

CN Core Network

DDoS Distributed Denial of Service

DEME Detector and Mitigation Engine

DN Data Network

DNS Domain Name System

DRL Deep Reinforcement Learning

DT Digital Twin

DTE Distributed Trustable AI Engine (DTE).

EM Early Modeling

ePEM End-to-End Secure Connectivity Manager

FAR Forwarding Action Rule

GHCR GitHub Container Registry

gNB Next Generation Node B

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IA-DT Impact Analysis Digital Twin

IBI Intent-based Interface

IP Internet Protocol

IT-X Project Iteration X

JSON JavaScript Object Notation

ML Machine Learning

NDT Network Digital Twin

NF Network Function

NTP Network Time Protocol

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 13 of 66 © 2023-2025 HORSE

P&P Prediction and Prevention

PAG Policies and Data Governance

PDU Protocol Data Unit

PFCP Packet Forwarding Control Protocol

QoS Quality of Service

RAN Radio Access Network

REST Representational State Transfer

RTR Reliability, Trust and Resilience

SEID Session Endpoint Identifier

SM Smart Monitoring

SMF Session Management Function

TEID Tunnel Endpoint Identifier

TTP Tactics, Techniques, and Procedures

TX.Y Task X.Y

UE User Equipment

UI User Interface

UPF User Plane Function

URL Uniform Resource Locator

VM Virtual Machine

WebUI Web-based User Interface

WPX Work Package X

XML Extensible Markup Language

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 14 of 66 © 2023-2025 HORSE

1 Introduction

The HORSE project represents a concerted effort to advance the cybersecurity framework
within the evolving landscape of 5G/6G networks. As the first major release, this document
encapsulates the extensive research, collaborative development, and meticulous integration
efforts that the consortium has undertaken. The HORSE platform is designed to offer a
comprehensive, scalable, and robust solution to address the multifaceted challenges of
cybersecurity in next-generation networks. This document not only details the initial release
but also sets a foundation for ongoing and future enhancements.

All the software and tools are available in a GitHub repository created specifically for HORSE

and located at https://github.com/HORSE-EU-Project.

1.1 Purpose of the document

The primary aim of this deliverable is to be an accompanying document that will guide the
readers through the components composing the first release for the HORSE platform. It is
designed to guide stakeholders through the intricacies of the HORSE modules, offering
detailed descriptions of their functionalities, installation processes, and operational
parameters. The document presents the resulting efforts of partners in transitioning from
conceptual development to practical implementation of the platform. It is worth mentioning that
during the implementation phase, some additional requirements arose, culminating in small
changes in the initial architecture, such as the addition of the Common Knowledge Base.

Furthermore, it acts as a reference point for the project's progress, showcasing the
consortium's achievements regarding the integration of the developed components. It sheds
light on the integration test procedures designed and implemented following the guidelines
presented in this deliverable to guarantee a smooth end-to-end integration of the HORSE
platform. The document demonstrates the functional validation of HORSE components by
proposing a set of demonstrators and the integration endpoints between components with
relevant tests that will guarantee a smooth end-to-end integration of the developed software.

The document describes the five demonstrators proposed to showcase the HORSE platform
in action. Each demonstrator covers distinct parts of the HORSE workflow, aiming to prevent,
detect, and mitigate mobile network threats and attacks. Although a unique demonstrator does
not cover the end-to-end workflow, the complete set of demonstrators proposed in this
document can ultimately validate the entire HORSE workflow.

Finally, Annex A provides a glimpse into the Key Performance Indicators (KPIs) that will be
used to evaluate the platform's performance in future iterations.

1.2 Relation to other HORSE deliverables and project work

This document reflects the efforts employed in designing and implementing the components
in all Work Packages (WP) of the HORSE Project. Specifically, it presents the software
developed in WP3, WP4, and WP5. In the scope of WP5, it presents the development of the
Intent-based Interface described in T5.1. Task T5.2 deals with the integration of components
developed in WP3 and WP4. It also presents the outcomes of tasks T5.3 and T5.4 regarding
demonstration strategy and continuous validation and scalability tests, respectively. It builds
on the foundational research already presented in D2.1 HORSE Landscape: Technologies,
State of the Art, AI Policies and Requirements [1], and it follows the architecture proposed in
D2.2 HORSE Architectural Design (IT-1) [2].

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 15 of 66 © 2023-2025 HORSE

1.3 Structure of the document

The document is structured as follows:

• Section 2: presents all the components developed so far in the HORSE Project's scope,
consolidating the work carried out in WP3, WP4, and WP5. It contains a short description
of the components' functionalities, a link to the source code available on GitHub,
dependencies, and instructions for installing and running the modules.

• Section 3 describes the continuous integration methodology adopted in HORSE, the
integration workflow, and the required artifacts for module integration tests. It also
presents an example of an integration test to be adopted by all components.

• Section 4 presents the validation strategy adopted in the HORSE intermediate release (IT-
1), the interactions between components, and the demonstrators proposed for the
functional validation of the HORSE platform's components.

• Section 5 concludes the document and draws the next steps in the HORSE development.
It highlights the complexity and advantages of the adopted integration strategy.

• Annex A presents the first thoughts and briefly describes the KPIs that will be used to
analyze and map HORSE platform features on the scenarios that will be used for validation
and demonstration.

• Annex B presents a detailed guide on how to setup secrets and specific configurations on
GitHub to enable the building and testing of the components.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 16 of 66 © 2023-2025 HORSE

2 List of Modules Included in HORSE Release 1

This section provides an overview of the modules included in the first release of the HORSE
platform, describing each module, its implemented functionalities, dependencies, and
installation instructions. It also points the reader to the software's GitHub repository. The
implementation of the modules follows the architecture proposed in the work of WP2 and
reported in D2.2 HORSE Architectural Design (IT-1) [2]. The overview of the main modules
and the interfaces and connections between modules is presented in Figure 1 to help the
reader navigate through the list of modules provided in this section.

Figure 1: The HORSE architecture

2.1 Smart Monitoring

This module provides the following functionalities:

• Data collection from Elastic Beats (e.g. network traffic, system metrics) and persistence in
Elasticsearch

• Data querying via Elasticsearch

• Data visualization via Kibana

Version: v 1.0

Link to repository:

https://github.com/HORSE-EU-Project/Sphynx-Data-Collection

Installation Instructions:

https://github.com/HORSE-EU-Project/Sphynx-Data-Collection/blob/main/README.md

List of dependencies and third-party software Included in the current release

• elasticsearch:7.17.13

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 17 of 66 © 2023-2025 HORSE

• kibana:7.17.18

• Docker, version 24.0

2.2 Pre-Processing

The pre-processing module acts as a middleware between the Smart Monitoring (SM) and
several HORSE components, which require continuous flow of network traffic to operate.
These are Detector and Mitigation Engine (DEME), Network Digital Twin (NDT) and Early
Modeling (EM). The main task of the Pre-Processing is to gather collected network traffic from
the SM’s Elasticsearch instance, process the data and filter the useful information and finally
forward these pieces of information to the correct HORSE component.

Version: v0.1

Link to repository:

https://github.com/HORSE-EU-Project/Pre-Processing

Installation Instructions:

https://github.com/HORSE-EU-Project/Pre-Processing/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Ubuntu 22.04.3

• Docker, version 26.1.1

• Docker Compose version v2.27.0

• Git version 2.34.1

2.3 Prediction and Prevention Digital Twin

The Prediction and Prevention (P&P) Digital Twin (DT) is one of the components of the
Sandboxing module. The module is aimed at building an emulated replica of the actual 5G/6G
infrastructure in order to perform predictions about potential events that might happen in the
future and enable prevention strategies. This module receives information from the Early
Modelling (EM) about the models of the attacks and the mitigations of each of them, and it
produces a list of potential threats and mitigation actions to submit to the Distributed Trustable
AI Engine (DTE).

The module is provided in the form of a Virtual Machine integrating the network emulator
environment and associated software to build and run the Digital Twin. This version includes
the input and output REST interfaces and implements simple algorithms to perform prediction
and detection of attacks. Next releases will focus on improving the performance of such
algorithm in order to provide reliable input to the DTE. For the purpose of testing, a web
interface is provided in order to check the received input files and produced outputs, and to
test the actions and predictions of the P&P DT.

Version: v0.1

Link to repository:

https://github.com/HORSE-EU-Project/PredictionDigitalTwin

Installation Instructions:

https://github.com/HORSE-EU-Project/PredictionDigitalTwin/blob/main/README.md

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 18 of 66 © 2023-2025 HORSE

List of dependencies and third-party software Included in the current release

• Virtualbox 7.0 (VM hosting environment)

• Vagrant v2.4.1 (VM provisioning)

• Ubuntu 20.04

• Comnetsemu: v0.3.0

• UERANSIM: v3.2.6

• Open5gs: v2.4.2

• Docker v20.10 or newer

• Python 3.10 or newer

• FASTApi

2.4 Impact Analysis Digital Twin

The Impact Analysis Digital Twin is one of the components of the Sandboxing module. This
module is in charge of building an emulated environment of the physical network and will help
the Intent-Based Interface (IBI) to take the decision about the proper mitigation for certain
attack. For this, this DT will work with what-if actions, where the IBI will send requests about
some countermeasures for the attacks in certain points of the network and the Impact Analysis
will respond with the concrete impact that they have in the emulated environment (e.g.,
bandwidth, latency, etc.). Also, this module receives information from the EM about the models
of the attacks and the mitigations of each of them.

Version: v0.1

Link to repository:

https://github.com/HORSE-EU-Project/Impact-Analysis-Digital-Twin

Installation Instructions:

https://github.com/HORSE-EU-Project/Impact-Analysis-Digital-Twin/blob/main/README.md

List of dependencies and third-party software Included in the current release

• KIND (Kubernetes cluster)

• Golang, version 1.21 or newer

• Kubectl, version 1.27.3 or newer

• Make

• Docker, version 20.10.16 or newer

• Kubernetes Network Emulator (KNE)

• Open5GS, version 2.7.0

• UERANSIM, version 3.2.6

2.5 Early Modelling

Version 0.1 of the Early Modeling (EM) software module contains a taxonomy responsible for
characterizing threats. The EM module analyzes the information on threats by characterizing
assets, threat actors, Tactics, Techniques, and Procedures (TTP), cyber security

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 19 of 66 © 2023-2025 HORSE

vulnerabilities, threats, and impact assessment of the attack and mitigation strategy. Version
0.1 is demonstrated with the help of key inputs and output. The input encompasses the threat
information, the threat actor, assets, TTP, and security vulnerabilities associated with the
respective attack. The mitigation actions are provided by the knowledge base and the outcome
is produced in the form of an XML model. The sandboxing module will use the XML model
produced by the EM software module for the prediction of threats and the preliminary
assessment of the attack impact.

Version: v0.1

Link to repository:

https://github.com/HORSE-EU-Project/earlymodeling_prototype

Installation Instructions:

https://github.com/HORSE-EU-Project/earlymodeling_prototype/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Docker version 24.0.7

2.6 Policies and Data Governance

Version 0.1 of the Policies and Data Governance (PAG) component includes: (a) the access
policy User Interface (UI) and the pertinent mechanism to enforce access policies per user and
per component, (b) the data retention policy UI and the pertinent mechanism to enforce data
retention policies per dataset, (c) the anonymization UI without the mechanism to implement
anonymization on datasets, (d) storage for the metadata of datasets. Version 0.1 of the PAG,
for demonstration reasons, also includes a mock sign-up and login (without email
authentication) and a minIO instance as the demo data store (populated with 2 datasets). The
PAG has been built in a way to allow to connect to more than one, new data stores in the
future.

Version: v0.1

Link to repository:

https://github.com/HORSE-EU-Project/PAG

Installation Instructions:

https://github.com/HORSE-EU-Project/PAG/blob/main/README.md

List of dependencies and third-party software Included in the current release:

• Docker, version 24.0.7

• Postgres, version 15

• MinIO, version : RELEASE.2024-05-10T01-41-38Z

• OpenFGA, version v1.5.3

2.7 Detector and Mitigation Engine

The Detector and Mitigation Engine (DEME) works in the “real context” providing threat
detection in the real infrastructure. Having historical network data, network topology
configuration and the name of the network features monitored for each network instance of the
topology, then

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 20 of 66 © 2023-2025 HORSE

• DEME can receive, via Application Programming Interface (API), from Pre-processing, in
real-time a snapshot of the network features monitored for each network instance of the
topology and it provides in output, for its second Machine Learning (ML) step, the real-
time comparisons of the incoming network data (that are periodically collected) with the
predicted baselines.

• Using a (Supervised) ML tool trained on the variations of the N variables provided by the
previous steps, DEME promptly detects any related attack with a 360 degrees perspective
(no siloization).

• DEME returns the accuracy of an attack for each network instance via API to DTE

Version: v 1.0

Link to repository:

https://github.com/HORSE-EU-Project/DEME-apis

List of dependencies and third-party software Included in the current release

• Docker, version 20.10.16 or newer

2.8 Common Knowledge Database

The Common Knowledge Base (cKB) is a component of the HORSE project, designed as a
centralized database to store and provide essential information on attack mitigations. The
uniqueness of this database lies in its enhancement with AI during the data population phase.

 The cKB is composed by:

• Database: stores detailed information on various attacks and their corresponding
mitigation actions.

• Web Server: exposes APIs to retrieve essential information from the database without
direct access.

 Here are listed the current functionalities of the cKB:

• The web server's API allows retrieval of a list of mitigations for a specified attack.

• Mitigations are provided in JSON format as an ordered list. Each mitigation includes an
execution priority to effectively counteract the specified attack, along with a description of
its impact and the rationale for its assigned priority.

• Artificial Intelligence is utilized to assign priorities to each mitigation related to specific
attacks. Generative AI will also be used to create detailed descriptions for each mitigation,
explaining why each priority was assigned.

Version: v 1.0

Link to repository:

https://github.com/HORSE-EU-Project/KnowledgeBase-proto

Installation Instructions:

https://github.com/HORSE-EU-Project/KnowledgeBase-proto/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Docker, version 26.0.7

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 21 of 66 © 2023-2025 HORSE

2.9 Distributed Trustable AI Engine

The Distributed and Trustable Engine (DTE) receives inputs from the DEME in the form of
advises, for different types of attacks in the network. DTE maps the outcome of ML detection
and classification to appropriate recommendations that are expressed through intents. These
intents are later forwarded to the IBI and can be expressed in two forms: a) mitigative, which
describes the objectives the system should accomplish in the short term (e.g., within a few
seconds) so that the impact of ongoing security incidents is reduced and b) preventive, which
describes the objectives the system should accomplish in the longer term so that is better
protected against future potential threats.

Version: v 1.0

Link to repository:

https://github.com/HORSE-EU-Project/NKUA-DTE

Installation Instructions:

https://github.com/HORSE-EU-Project/NKUA-DTE/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Docker version 25.0.3

• FastAPI version

2.10 Intent-based Interface

The Intent-based Interface (IBI) is a module that can receive intents regarding the desired state
of the network and translate the intents to policies that can be applied in the infrastructure. In
the HORSE implementation, the IBI can receive security intents from the DTE or from the
network administrators through the Intent Graphical User Interface (GUI). The security intents
could be mitigation or prevention intents, which are for threat mitigation and prevention,
respectively. Within the IBI, the intents are processed and matched with the policies that are
applied in the network to fulfill the active intents. The policies are extracted from the cKB of the
HORSE project. A network administrator can also input Quality of Service (QoS) intents
through the Intent GUI, which the IBI is expected to comply with when deciding which policies
to select for specific security intents. Internally to the IBI, the Policy Configurator resolves
conflicts between two policies and configures its conflict-free policies into workflows that are
sent to the Reliability, Trust and Resilience (RTR) component. These workflows contain the
desired mitigation or prevention actions to be implemented in the network to neutralize or
prevent attacks. The management of active intents is possible through the Intent GUI or
RESTful APIs.

Version: v 0.5a

Link to repository:

https://github.com/HORSE-EU-Project/IBI

Installation Instructions:

https://github.com/HORSE-EU-Project/IBI/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Elastic Search, version 8.13.2

• Docker, version 26.1.2

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 22 of 66 © 2023-2025 HORSE

• Docker Compose, version 2.27.0

• Python, version 3.12.3

• Flask, version 3.0.1

• FastAPI, version 0.111.0

• Pandas, version 2.2.2

2.11 Reliability, Trust and Resilience

The Reliability, Trust and Resilience (RTR) is part of the mitigation enforcement workflow. It is
located between the IBI and the ePEM and is essentially responsible for interpreting a high-
level sentence, describing the mitigation actions that need to be applied to certain areas of the
topology. Based on this sentence, the RTR can create applicable rules in the form of Ansible
playbooks. These playbooks will be forwarded to the End-to-End Secure Connectivity
Manager (ePEM) and will be enforced on the requested part of the topology.

Version: v 0.1

Link to repository:

https://github.com/HORSE-EU-Project/RTR

Installation Instructions:

https://github.com/HORSE-EU-Project/RTR/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Ubuntu 22.04.3

• Docker, version 26.1.1

• Docker Compose version v2.27.0

• git version 2.34.1

2.12 End-to-End Secure Connectivity Manager

The End-to-End Secure Connectivity Manager (ePEM) is a network-oriented meta-
orchestrator, specifically designed for zeroOps and continuous automation. It can create,
deploy, and manage the lifecycle of different network ecosystems by consistently coordinating
multiple artifacts at any programmability level (from physical devices to cloud-native
microservices).

The ePEM plays a pivotal role in the HORSE security infrastructure. HORSE represents a
cutting-edge security infrastructure designed to safeguard complex, distributed, and
heterogeneous systems. In this intricate environment, the ePEM serves as a central
architectural element, orchestrating actions and providing observability over the various
components that constitute the end-to-end services secured within the HORSE security
perimeter.

Key Features

• Deploys blueprints that build 5G, kubernetes (k8s), and VyOS2 services

• Manages the lifecycle of blueprints

• Manages k8s cluster and Machines/VMs

Version: v1.0.1

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 23 of 66 © 2023-2025 HORSE

Link to repository:

https://github.com/HORSE-EU-Project/ePEM

Installation Instructions:

https://github.com/HORSE-EU-Project/ePEM/blob/HORSE/README.md

https://nfvcl-ng.readthedocs.io/en/latest/index.html#getting-started

Prerequisites:

• An OpenStack instance (you can use all-in-one installation here).

• An Ubuntu (22.04 LTS) instance where the NFVCL will be installed and run.

• Having OSM 14 running on a reachable machine, in the following installation procedure,
all the services will be installed on the same Ubuntu instance.

• Python 3.11 (Installation performed in setup.sh).

• If the NFVCL and OSM are running on the same machine:

– RECOMMENDED: 4 CPUs, 16 GB RAM, 80GB disk and a single interface with Internet access.

– MINIMUM: 2 CPUs, 8 GB RAM, 50GB disk and a single interface with Internet access.

2.13 Domain Orchestrator Connectors

The Domain Orchestrator Connectors (DOC) is the last component in HORSE Context and its
main purpose is to manage multicluster environments. To achieve its goal, in its version 0.1,
the DOC adapts different mitigation action in the HORSE context to a Liqo orchestrator. Each
action is mapped into a particular way to enforce it in the infrastructure. In that way DOC
achieves that Topology/infrastructure could be deployed in different geographical places.

Version: v0.1

Link to repository:

https://github.com/HORSE-EU-Project/Domain-Orchestrator-Connectors

Installation Instructions:

https://github.com/HORSE-EU-Project/Domain-Orchestrator-
Connectors/blob/main/README.md

List of dependencies and third-party software Included in the current release

• Docker, version 26.1.2

• Golang 1.22.2

– github.com/gin-gonic/gin v1.10.0

– github.com/spf13/viper v1.19.0

– github.com/stretchr/testify v1.9.0

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 24 of 66 © 2023-2025 HORSE

3 System Integration Tests

This section focuses on the system integration tests conducted for the HORSE platform's first
release. These tests are essential to ensure the various modules work seamlessly together
and perform as expected in a real-world environment. This section outlines the methodologies
employed and the specific tests conducted. It presents an example of integration tests that are
performed between two HORSE components.

3.1 Continuous Integration and Methodology

The continuous integration (CI) processes within the HORSE project are enhanced through a
robust and systematic approach. By leveraging industry best practices, the methodology
centers around using GitHub Actions to automate integration and testing workflows, ensuring
seamless validation and integration of all project components.

3.1.1 Integration testing

This type of testing evaluates how various software application modules interact and operate
cohesively. The system is divided into components known as modules or units, each
responsible for a specific task. The real challenge comes when combining these components
to develop the entire software system.

At this stage, the connections between each module are carefully examined to uncover any
potential issues arising from a single unit. Once the testing is completed, end-to-end tests are
conducted to evaluate the application's functionality from start to finish.

3.1.2 Unit testing vs Integration testing

Unit tests and integration tests have distinct purposes and are conducted at different stages of
the development lifecycle. Table 1 compares the differences between unit tests and integration
tests:

Aspect Unit Testing Integration Testing

Scope Focuses on individual units
or specific modules.

Evaluates the interaction
of integrated modules.

Objective Verify that each element
works independently.

Verify that all connected
pieces work correctly
together.

Interoperability External dependencies are
kept separate from the tests.

Requires integration with
real-world modules.

Speed Since it focuses on small
units, execution is faster.

Execution time is slightly
longer due to the testing of
various modules.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 25 of 66 © 2023-2025 HORSE

Coverage Provides extensive code
coverage by thoroughly
inspecting modules.

Ensures that the modules
work correctly as part of
the overall system.

Testing Workflow Developers typically perform
unit tests before integration
tests.

Usually conducted during
the software integration
phase.

Table 1: Integration approaches

3.1.3 Integration Tests Approaches

• Top-Down Approach (incremental): The top-down approach begins integration from the
top-level modules and progresses downward. Stubs are used to simulate lower-level
modules during early testing. While this approach validates high-level functionality early
and can identify major design flaws, it delays testing of lower-level modules and requires
the time-consuming development of stubs. Consequently, integration issues in lower-level
modules might only surface late in the process.

• Bottom-Up Approach (incremental): Conversely, the bottom-up approach starts from
the lowest-level modules and moves upward, using drivers to simulate higher-level
modules. This method allows for early validation of lower-level functionality and makes it
easier to identify and fix defects in these modules. However, high-level functionality is
tested late, and the development of drivers can also be time-consuming, leading to
potential delays in discovering integration issues in higher-level modules.

• Big-Bang Approach (non-incremental): The Big-Bang approach involves integrating all
modules simultaneously and testing the complete system. This approach offers
comprehensive testing of the entire system, faster integration, and immediate identification
of interaction issues. It simplifies management by eliminating the need for stubs and
drivers. However, debugging can be challenging due to the simultaneous integration of
many components, and identifying the source of defects can be complex. This method
requires all modules to be ready for integration at the same time.

3.1.4 Selected Integration Test Approach for HORSE Project

The Big-Bang approach for integration testing is employed to achieve efficient and reliable
integration. This method integrates all components simultaneously and then tests them as a
complete system. This approach is chosen over the bottom-up or top-down methodologies due
to its distinct advantages:

Why Big-Bang is Better for the HORSE Project

1. Holistic Validation: The HORSE project involves integrating multiple complex
components, such as ePEM and RTR, that must work seamlessly together. The Big-
Bang approach ensures a holistic validation of the entire system, confirming that all
components interact correctly from the outset.

2. Faster Integration: Given the project’s scope and the need for rapid development
cycles, the Big-Bang approach allows for quicker integration compared to phased
methods like top-down and bottom-up. This is crucial for meeting tight project deadlines
and delivering incremental releases efficiently.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 26 of 66 © 2023-2025 HORSE

3. Immediate Feedback: By integrating all components simultaneously, the Big-Bang
approach provides immediate feedback on the overall system’s functionality. This allows
for quick identification and resolution of integration issues that could affect multiple
components.

4. Resource Efficiency: The Big-Bang approach reduces the overhead associated with
creating and maintaining stubs and drivers required in other methods. This frees up
resources for other critical development activities, enhancing overall efficiency.

5. Simplified Management: Managing the integration process becomes simpler with the
Big-Bang approach, as there is a single, comprehensive integration phase. This reduces
the complexity of coordinating multiple integration phases and ensures a streamlined
workflow.

6. Suitable for Tested Modules: The Big-Bang approach is particularly effective when
individual modules are relatively mature and well-tested in isolation. The HORSE
project’s components, such as ePEM and RTR, have undergone significant unit testing,
making them suitable for this approach.

3.2 Horse Integration Workflow

The diagram in Figure 2 illustrates an integration workflow for the HORSE Project, using
technologies such as GitHub Actions to automate and streamline the continuous integration
process. The workflow showcases how modules can be integrated using the aforementioned
Big-Bang approach, where all modules are integrated simultaneously and tested as a complete
system. Although this example focuses on two modules (ePEM and RTR), the methodology
can scale to accommodate more modules as required.

Figure 2: Integration workflow proposed for the HORSE Project

1. Commit (Step 1): The process begins when a HORSE developer makes a commit to
the GitHub repository. This commit serves as the initial trigger for the CI/CD pipeline.

2. Workflow Trigger (Step 2): Upon this commit, a GitHub Actions workflow is
automatically triggered. This workflow initiates the series of automated tasks in the
pipeline.

3. Build (Step 3): The GitHub Actions workflow starts the build process on a GitHub
Runner. This runner provides a consistent environment for executing the build tasks.

4. Unit Testing (Step 4): The first task within the build process is to perform unit testing.
These tests verify the functionality of individual components (e.g., ePEM and RTR) in
isolation, ensuring that each module operates correctly on its own.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 27 of 66 © 2023-2025 HORSE

5. Integration Testing (Step 5): After the unit tests pass, integration testing is performed.
This phase tests the interactions between the ePEM and RTR components, verifying
that they work together seamlessly as an integrated system.

6. Conditional Steps - Publish or Fail (Step 6a & 6b):
a. Publish (Step 6a): If all tests (unit and integration) pass successfully, the

workflow proceeds to publish the build. This involves pushing the Docker image
to the GitHub Container Registry (GHCR).

b. Fail Build (Step 6b): If any tests fail, the workflow stops, and the build process
is marked as failed. The Docker image is not published, indicating that there
are issues to be resolved before the next integration attempt.

7. GitHub Container Registry (GHCR): When the build is successful and the Docker
image is published, it is stored in the GHCR. This makes the image available for
deployment and further testing.

8. Test Reporting: The workflow includes a step using the TestReporter GitHub Action

to generate detailed reports of the test results. This report helps developers understand
the outcomes of their build and tests, providing insights into any issues that need
addressing.

3.3 Requirements For Integration

To ensure a seamless and effective integration process for the HORSE project, the following
needs must be addressed for each repository and project:

1. Unit Testing:
Comprehensive unit tests should be implemented for each existing repository/project.
This ensures that individual components function correctly in isolation.

2. Load Testing and Performance Benchmarking:
Scripts and guidelines for load testing and performance benchmarking should be
developed. These tests are crucial for identifying bottlenecks and ensuring the system
can handle expected loads.

3. Compilation of Component Dependencies and Interactions:
A detailed compilation of all component dependencies for each project in HORSE is
necessary. This includes listing all libraries, frameworks, and tools that each
component relies on.

4. Integration Tests:
Integration tests should be designed to verify interactions between components. This
includes calls to dependencies, API calls, and understanding who calls whom within
the system.

5. Dockerfiles:
Dockerfiles need to be created for each component. These files define how the
application is packaged into a Docker container, ensuring consistency across different
environments.

6. Docker-Compose File:
A Docker-Compose file could be provided to define how multiple Docker containers
interact. This includes service dependencies, network configurations, and volumes.

7. Environment Configuration:
Clear and detailed environment configuration is necessary. This includes environment
variables, configuration files, and setup scripts for different environments
(development, staging, production).

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 28 of 66 © 2023-2025 HORSE

8. API Documentation:
Comprehensive API documentation should be provided. This documentation should
include details of all endpoints, request and response formats, and any authentication
mechanisms.

3.4 Assets Provided by the Integration Plan

The integration plan provides the following resources and support:

1. Comprehensive Guide on CI/CD Best Practices:
A detailed guide tailored specifically for the HORSE project, outlining best practices for
CI/CD.

2. Instructions and Assistance for GitHub Actions Workflow:
Clear instructions and hands-on assistance to help teams build their GitHub Actions
workflow .yml files. This support ensures that automated testing and deployment

processes are correctly implemented.

3. Example Repositories:
Example repositories with pre-configured CI/CD pipelines will be provided. These serve
as references to help teams set up their own workflows efficiently.

4. Templates for Dockerfiles and Docker-Compose Files:
Standardized templates for Dockerfiles and Docker-Compose files will be provided to
ensure consistency and ease of use across different projects.

5. Standards and Guidelines for Security and Compliance:
Standards and guidelines to ensure that all code and dependencies meet security and
compliance requirements. This includes automated checks integrated into the CI/CD
pipeline.

6. Integration of Code Review Tools:
Integration of code review tools and processes, such as SonarQube or similar, to
ensure high-quality code. These tools help in identifying potential issues early and
maintaining code quality throughout the development process.

3.5 Example Continuous Integration Testing (ePEM and RTR)

To test the integration between RTR and ePEM, first some modifications in the files of both
projects must be carried out. These are listed below including the explanation for such
modifications. Subsequently, taking these changes into account, we explain how to run the
integration with GitHub Actions.

3.5.1 Changes in ePEM and RTR files

Use of a shared network

First, there is a need to create a docker external network called, for example, shared network,
in order to communicate RTR and ePEM:

docker network create shared-network

Modification of ePEM compose.yaml

There are two modifications that must be done in ePEM compose.yaml file: first, to use the

shared network in all services; second: to name the nfvcl service to be called from RTR:

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 29 of 66 © 2023-2025 HORSE

services:

 nfvcl:

 [...]

 container_name: epem

 networks:

 - shared-network

[...]

networks:

 default:

 ipam:

 driver: default

 config:

 - subnet: "10.224.52.0/24"

 shared-network:

 external: true

Modification of ePEM Dockerfile

There is one addition that must be done in ePEM Dockerfile to set the PYTHONPATH

environment variable to /app/nfvcl-ng/src/nfvcl, to ensure that Python includes this

directory when it searches for modules to import:

ENV TZ=Europe/Rome

ENV PYTHONPATH=/app/nfvcl-ng/src/nfvcl

Modification of RTR docker-compose.yaml

Modify the RTR docker-compose.yaml file to use the shared-network in all services:

services:

 rtr-api:

 [...]

 networks:

 - shared-network

[...]

networks:

 shared-network:

 external: true

Modify the same file to use port 27018 as the host port for mongodb. This prevents collision

with host port 27017 used by the mongodb instance in ePEM.

mongodb:

 [...]

 ports:

 - "27018:27017"

Modification of RTR send_mitigation_rules.py file

With this file there is enough code to do a prelimiary test of RTR - ePEM communication, but
some modifications must be carried out to accommodate both sides. The definition of the
simple_uploader method must be changed to include two parameters that must be included

in ePEM /v2/horse/rtr_request: target_ip and target_port. The following code exempt

show the updates.

def simple_uploader(target_ip, target_port, action_id,

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 30 of 66 © 2023-2025 HORSE

 action_definition, service, playbook_yaml)

The receiver_url must point to the ePEM entry point for horse messages:

receiver_url = "http://epem:5002/v2/horse/rtr_request"

The params sent in the request must accomodate ePEM API definition:

params = {

 "target_ip": target_ip,

 "target_port": target_port,

 "service": service,

 "actionType": action_definition,

 "actionID": action_id

 }

Modification of RTR IBI-RTR_api.py file

In order to complete the call to the previous simple_uploader() method, the code in the

register_new_action() in IBI-RTR_api.py must include some mock data for the two new

parameters:

target_ip = "192.168.1.12"

target_port = "8080"

action_id = "123"

action_definition = "Service Modification"

service = "DNS"

simple_uploader(target_ip, target_port, inserted_action_id,

 action_definition, service, complete_playbook)

3.5.2 Integration Tests

With the previous modifications, it is possible to start the services using docker compose up

in each project (ePEM and RTR).

Once both services are running, it is possible to use the tests included in the RTR project to
check the connectivity. More specifically, two files could be run to check that everything is
working properly:

pytest RTR/tests/test_user_register.py

pytest RTR/tests/test_create_and_get_specific_action.py

The first script creates a user in RTR users collection using RTR REST API. This user is then
used to create a mitigation action also using RTR REST API. This action is propagated to the
ePEM calling to the ePEM HORSE REST endpoint.

3.6 GitHub Actions (Core framework for HORSE-CI/CD)

GitHub Actions is a CI/CD tool that allows you to automate development workflows directly
from a GitHub repository. With GitHub Actions, you can define a series of steps that will
automatically execute in response to specific events, such as making a push to the repository
(i.e., update the source code). The key components and the necessary secrets required by

GitHub actions are detailed below. Subsequently, it is explained how to use GitHub Actions to
create ePEM and RTR images that will be stored in the GitHub Container Repository.
Following, it is described how to trigger the testing with docker compose with the use of GitHub
Actions. Lastly, a workflow chart is shown and summarized for better understanding.

http://epem:5002/v2/horse/rtr_request

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 31 of 66 © 2023-2025 HORSE

3.6.1 Key Components of GitHub Actions Workflow

These are workflow definitions that describe what actions should be taken when a specific
event occurs. Workflows are defined in YAML files stored in the github/workflows directory

of the project repository.

• Jobs: These are units of work or tasks within a workflow. A workflow can have one or
more jobs that run either in parallel or sequentially, depending on the established
conditions.

• Steps: These are individual steps within a job. Each step can execute a bash command
or a specific action.

• Actions: These are reusable commands that can be used in steps. GitHub provides a
large number of predefined actions, and you can also create your own actions.

3.6.2 Secrets in GitHub

Secrets in GitHub are sensitive values, such as API keys or access tokens, that are securely
stored and used in GitHub Actions workflows. Secrets are encrypted and only accessible by
the repository's workflows.

Adding secrets to HORSE Repository

The steps to create secrets are as follows. A later section will provide a detailed explanation
of how to do this and the suggested naming conventions:

1. In the Settings tab of the repository.

2. In the left menu, select Secrets and variables and then Actions.

3. Click on New repository secret.

4. Enter the name and value of the secret and click on Add secret.

Using Secrets in a Workflow

To use a secret in your workflow, you can reference it using the syntax ${{
secrets.NAME_OF_SECRET}}.

Necessary Secrets for the Build Job of the Workflow

For the correct operation of the build job, it is essential to configure a series of secrets in the
GitHub repository. The necessary secrets are detailed in Annex B.

3.7 Explanation of the rtr.yml Workflow for Building the RTR

Image

The rtr.yml workflow is a configuration file used in GitHub Actions to automate the process

of building and deploying a Docker image to the GHCR. This workflow runs whenever a push
is made to the main branch of the repository. Each section of the workflow is detailed below:

Workflow Name

name: RTR CI

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 32 of 66 © 2023-2025 HORSE

Workflow Triggers

The workflow is configured to automatically run whenever any changes are made and pushed
to the main branch.

on:

 push:

 branches:

 - main

Jobs

The workflow defines a single job named build, which contains a series of steps to build and
deploy the Docker image. The build job runs on a container with the latest version of Ubuntu.

jobs:

 build:

 runs-on: ubuntu-latest

Repository Checkout

This step uses the action actions/checkout@v2 to check out the repository's source code

into the workspace. This allows subsequent steps to access the source code needed to build
the Docker image.

 - name: Checkout repository

 uses: actions/checkout@v2

Docker Buildx Setup

This step sets up Docker Buildx, a tool that enables the building of multi-platform Docker
images. The action docker/setup-buildx-action@v1 is used to prepare the build

environment.

 - name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v1

Login to GitHub Container Registry

In this step, the login to GitHub Container Registry is performed using credentials stored in
repository secrets. The secrets GHCR_TOKEN, GHCR_URL, and GHCR_USERNAME provide the

authentication token, registry URL, and username, respectively.

 - name: Log in to GitHub Container Registry

 run: echo "${{ secrets.GHCR_TOKEN }}" | docker login "${{ secrets.GHCR_URL

}}" -u "${{ secrets.GHCR_USERNAME }}" --password-stdin

Build and Deploy Docker Image

This step performs two main tasks:

1. Building the Docker image using the docker build command. The image is tagged with
the value of the GHCR_IMAGE secret, which specifies the image name and tag.

2. Publishing the Docker image to the GitHub Container Registry using the docker push
command.

 - name: Build and push Docker image

 run: |

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 33 of 66 © 2023-2025 HORSE

 docker build -t ${{ secrets.GHCR_IMAGE }} .

 docker push ${{ secrets.GHCR_IMAGE }}

 The steps to configure the ePEM workflow for building the ePEM image is similar to the
already explained RTR workflow.

3.8 Explanation of the rtr.yml Workflow for Integrating and
Testing RTR and ePEM

The rtr.yml workflow for integrating and testing RTR and ePEM is a configuration file used

in GitHub Actions to automate the process of running integration tests for the RTR and ePEM
services. This workflow runs after the build job completes successfully. Each section of the
workflow is detailed below:

Workflow Name

name: RTR CI

3.8.1 Workflow Triggers

The workflow is configured to run the integration tests once the build job has successfully
completed.

Jobs

The workflow defines a single job named test, which contains a series of steps to integrate and
test the RTR and ePEM services. The test job runs on a container with the latest version of
Ubuntu.

jobs:

 test:

 runs-on: ubuntu-latest

 needs: build

Repository Checkout

This step uses the action actions/checkout@v2 to check out the repository's source code

into the workspace. This allows subsequent steps to access the source code needed for
integration testing.

- name: Checkout repository

 uses: actions/checkout@v2

Docker Buildx Setup

This step sets up Docker Buildx, a tool that enables the building of multi-platform Docker
images. The action docker/setup-buildx-action@v1 is used to prepare the build

environment.

- name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v1

Login to GitHub Container Registry

In this step, the login to GitHub Container Registry is performed using credentials stored in
repository secrets. The secrets GHCR_TOKEN, GHCR_URL, and GitHub.Actor provide the

authentication token, registry URL, and username, respectively.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 34 of 66 © 2023-2025 HORSE

- name: Log in to GitHub Container Registry
 run: echo "${{ secrets.GHCR_TOKEN }}" | docker login "${{ secrets.GHCR_URL

}}" -u "${{ github.actor }}" --password-stdin

Docker Compose Setup

This step installs Docker Compose, which is used to manage multi-container Docker
applications.

- name: Set up Docker Compose

 run: |

 sudo apt-get update

 sudo apt-get install -y docker-compose

Fetch Docker Compose Files

These steps fetch the compose.yaml and config_compose.yaml files from the ePEM

repository. These files are required to set up and run the ePEM services.

- name: Get compose.yaml from ePEM

 id: get-docker-compose

 run: |

 curl -o compose.yaml \

 https://raw.githubusercontent.com/HORSE-EU-

Project/ePEM/HORSE/compose.yaml

- name: Get config_compose.yaml from ePEM

 id: get-docker-compose-config

 run: |

 curl -o config_compose.yaml \

 https://raw.githubusercontent.com/HORSE-EU-

Project/ePEM/HORSE/config_compose.yaml

Create Shared Network

This step creates a shared Docker network to facilitate communication between RTR and
ePEM services.

- name: Create shared-network

 run: docker network create shared-network

Run Docker Compose for RTR

This step launches the RTR services using Docker Compose.

- name: Run docker-compose for RTR

 run: docker-compose -f docker-compose.yml up -d

Wait for RTR Services

This step ensures that the RTR services are ready before proceeding to launch the ePEM
services.

- name: Wait for RTR services to be ready

 run: |

 while ! curl -s http://localhost:8000 > /dev/null; do

 echo "Waiting for rtr service..."

 sleep 5

 done

http://localhost:8000/

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 35 of 66 © 2023-2025 HORSE

Run Docker Compose for ePEM

This step launches the ePEM services using Docker Compose.

- name: Run docker-compose for ePEM

 run: docker-compose -f compose.yaml up -d

Wait for ePEM Services

This step ensures that the ePEM services are ready before proceeding with the tests.

- name: Wait for ePEM services to be ready

 run: |

 while ! curl -s http://localhost:5002 > /dev/null; do

 echo "Waiting for epem service..."

 sleep 5

 done

Install Dependencies

This step installs the necessary Python dependencies for running the integration tests.

- name: Install dependencies

 run: |

 python -m pip install --upgrade pip

 pip install pytest

Run Integration Tests

These steps execute the integration tests using pytest [3]. Each test file is run separately to
verify different functionalities.

- name: Run get homepage test
 run: pytest tests/test_homepage.py

- name: Run create user test

 run: pytest tests/test_user_register.py

- name: Run login test

 run: pytest tests/test_login.py

- name: Login and get all actions

 run: pytest tests/test_get_all_actions.py

- name: Create a new action

 run: pytest tests/test_create_and_get_specific_action.py

Show Logs

This step retrieves and displays the logs from both RTR and ePEM services to help with
debugging and verification.

- name: Show logs RTR and ePEM

 run: |

 docker-compose -f docker-compose.yml logs rtr-api

 docker-compose -f compose.yaml logs nfvcl

Stop Docker Containers

This final step stops all the Docker containers, cleaning up the environment.

http://localhost:5002/

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 36 of 66 © 2023-2025 HORSE

- name: Stop Docker containers

 run: |

 docker-compose -f docker-compose.yml down

3.9 GitHub Actions Workflow Chart

The GitHub Actions Workflow chart is depicted in Figure 3, and it is composed of build job and
test job as described below.

Build Job:

1. Log in to GHCR: Authenticate to the GHCR.

2. Build from Dockerfile: Use the Dockerfile to build the service image.

3. Push Image to GHCR: Push the built image to the GHCR for storage.

Test Job:

 Launch Services: Deploy the necessary services to run integration tests.
1. Integration Tests: Execute the integration tests to verify the functionality and integration

of the services.

2. Get Logs: Retrieve and review logs from the integration tests to ensure everything ran
as expected.

Figure 3: GitHub Actions workflow chart

3.10 Description of the Demonstrators and Functional
Validation

As detailed the project settled the necessary integration environment to run automated system
integration tests. The automation of the process according to CI/CD good software practices
is essential to result in a stable framework and keep track of the integration (including possible

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 37 of 66 © 2023-2025 HORSE

dependences). Table 2 gathers ten system integration tests defined in which input/output and
data format are tested and the status (at the moment of editing this document) for HORSE
framework version 1.0.

System
Test

Integration test points – input/output Status

1 DEME (mockup) - DTE COMPLETED

2 DTE - IBI COMPLETED

3 NDT – IBI (what-if interface, translator included) PARTIALLY COMPLETED

4 KDB - IBI – RTR PARTIALLY COMPLETED

5 NDT – EM – KDB (knowledge database) COMPLETED

6 RTR – ePEM COMPLETED

7 Preproc – DEME (mockup) [input (datasets)] COMPLETED

8 ePEM - DOC and Testbeds COMPLETED

9 Preproc - SM and Testbeds PARTIALLY COMPLETED

10 SM - PAG IN PROGRESS

Table 2: Status of integration tests for HORSE framework version 1.0

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 38 of 66 © 2023-2025 HORSE

4 HORSE Framework Validation Matrix

This section includes the validation done for the HORSE intermediate release (IT-1). The
HORSE validation process has been done by means of five demonstrators, later described in
this section, in the three testbeds of the project. This validation process is facilitated through
its proper documentation and monitoring. Towards this direction, we have developed an
integration matrix, see Table 3, which represents the interactions between the HORSE
components, based on a Design Structure Matrix (DSM) [4]. In this matrix, each row and
column represent a HORSE component or the infrastructure (emulated through the three
testbeds of the project). It should be noted that a unique code has been used for each
interaction which is in the form of [component A id].[component B id]. This code indicates a
link from component A to component B. The id of each component is unique, and it is used in
all the validation tables.

1
.

S
M

2
.

P
re

-p
ro

c
e
s
s
in

g

3
.

D
E

M
E

4
.

D
T

E

5
.

P
re

d
ic

ti
o

n
 &

P

re
v
e
n

ti
o

n
 D

T

6
.

Im
p

a
c
t

A
n

a
ly

s
is

 D
T

7
.

IA
-D

T
 M

o
d

e
l

T
ra

n
s

la
to

r

8
.

E
M

9
.

P
A

G

1
0
.

IB
I

1
1
.

R
T

R

1
2
.

e
P

E
M

1
3
.

D
O

C

1
4
.

C
A

S

1
5
.

C
o

m
m

o
n

 K
n

o
w

le
d

g
e

D
a
ta

b
a

s
e

1
6
.

In
fr

a
s
tr

u
c
tu

re

1. SM

2. Pre-processing 2.3

3. DEME 3.4

4. DTE 4.10

5. Prediction & Prevention
DT

 5.4 5.15

6. Impact Analysis DT 6.7

7. IA-DT Model Translator 7.6 7.10

8. EM 8.5

9. PAG

10. IBI 10.7 10.11 10.15

11. RTR 11.12

12. ePEM 12.13

13. DOC 13.16

14. CAS

15. Common Knowledge
Database

 15.10

16. Infrastructure

Table 3: HORSE Framework intermediate release (IT-1) validation matrix

Based on the HORSE framework IT-1 validation matrix (Table 3), and the workflows defined
in D2.2 HORSE Architectural Design (IT-1) [2], the HORSE components’ interfaces have been
developed, which are presented in Table 4, Table 6, Table 8, Table 10 and Table 12. The
information they encapsulate includes:

• ID: Unique identifier as set in the section x HORSE integration matrix

• CompA and CompB: Names of the HORSE components (output from component A, input
to component B)

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 39 of 66 © 2023-2025 HORSE

• Responsible: Partner(s) responsible for the implementation and documentation of the
respective integration endpoint

• Data Type and Protocol used for the information exchange between component A and
component B

Furthermore, validation tests have been developed to verify the interactions between the

HORSE components. A test case was defined for each interaction pair together with the

expected results of the interaction. The information for the different test cases include:

• Unique identifier as set in the HORSE integration matrix;

• CompA and CompB: Names of the HORSE components;

• Test description;

• Test Result;

• Current implementation status for the test.

The technical validation tests are summarized in Table 5, Table 7, Table 9, Table 11, and Table
13, which outline the actual tests performed for each interaction as well as the result and the
status of the testing process. Next, the five proposed demonstrators used in the test process
are described together with its corresponding interfaces and validation tests.

4.1 Detection and mitigation of DDoS attack over NTP or DNS
services

The demonstration will showcase the detection of an attack, using a DDoS DNS (and/or NTP)
amplification attack as an example, leveraging the DEME threat detector based on an
innovative architecture capable of deploying multiple hierarchical levels of ML. As shown in
Figure 4, the attack, following known dynamics, is initiated by a hacker who controls a set of
devices that, using the spoofed IP address of the victim, send false requests to the DNS server
(and/or NTP server). These requests result in enormous responses that quickly exhaust
connectivity resources. The scenario is demonstrated on the CNIT test bed illustrated in Figure
4 and follows the path from the hacker to the victim (Gateway), indicated with arrows of
different colors (black for requests to the servers and red for amplified responses).

Figure 4: DNS/NTP Attack on the CNIT testbed

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 40 of 66 © 2023-2025 HORSE

The data generated on the test bed through appropriate traffic generators follow theoretically
studied trends, verified by dedicated field campaigns, and are appropriately extracted and
processed by the upstream components of the DEME threat detector (SM and Pre
Processing). These data are supplied to the threat detector in the form of time series that are
used to complete both the historical logs, on which the ML model bases its training, and the
runtime samples that are processed for detection. The outputs of the detector, including
indications of the types of attacks detected and their relative confidence, are then passed to
downstream components for the determination and implementation of the best possible
mitigation actions based on the specific scenario encountered.

The list of HORSE components involves therefore:

• SM – Smart Monitoring

• Pre-Processing

• DEME – Detector and Mitigation Engine

• DTE – Distributed Trustable AI Engine

The demonstration mainly focuses on the features of the threat detector, DEME, which
showcases several important points of innovation. The workflow of the demonstrator is
depicted in Figure 5.

• Firstly, from a general perspective, the MML-based Threat Detector was conceived within
the HORSE framework to form an innovative and extremely powerful synergy with the
Digital Twin. These combined characteristics are deployed synergistically within HORSE
to provide a robust defense against cybersecurity attacks. Not only do the different
perspectives and predictive capabilities complement each other, but the Digital Twin also
provides the necessary assessments for the dynamic and non-disruptive application of
mitigation actions triggered by the detection of attacks.

• Secondly, the DEME threat detection block, with its innovative architecture, proves
capable of achieving higher learning levels to effectively and rapidly tackle not only 1-day
attacks but also 0-day attacks, which, for example, may exploit multiple vulnerabilities in
combination.

• Thirdly, the multiple levels of ML will allow, in the context of greater learning, the ability to
transcend pre-configured detection thresholds. This enhances the level of automation and
dynamic adaptation to network variations.

• Finally, within the combination of tested ML algorithms, an innovative algorithm patented
by Ericsson to improve the detection speed will be evaluated.

Figure 5: Demonstrator 1 Workflow

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 41 of 66 © 2023-2025 HORSE

Integration Endpoints Responsible For Data Type & Protocol

ID CompA CompB CompA CompB

2.3
Pre-
processing

DEME 8BELLS ETI JSON over HTTP/REST API

3.4 DEME DTE ETI NKUA JSON over HTTP/REST API

Table 4: HORSE components integration endpoints – Demonstrator 1

Interactions Test Description Result Status

ID CompA CompB

2.3
Pre-
processing

DEME

Check that the collected data
(PCAP files and logs) is
processed and transferred to
the DEME module.

The collected
and
processed
data (PCAP
files and logs)
is available at
the DEME
module.

In progress

3.4 DEME DTE

Detection of attacks
stimulated on the test bed
(DNS and/or NTP) for their
duration.

Indication of
which attacks
are occurring,
along with
their detected
type and
detection
confidence.

 In progress

Table 5: HORSE framework interactions testing - Demonstrator 1

4.2 Use of Network Digital Twin to assess the impact of DDoS
mitigation actions

The main goal of this demonstration is to present the capacity of doing continuous analysis in
a Digital Twin. The modules involved here are the Impact Analysis Digital Twin (IA-DT),
including the Model Translator as a part of this DT and the Intent-Based Interface.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 42 of 66 © 2023-2025 HORSE

Figure 6: Demonstrator 2 Workflow

As indicated in the workflow depicted in Figure 6, the modules will follow the what-if loop. This
means that the IBI will request to the Impact Analysis DT to test some possible mitigations to
certain attacks that can appear in the network; in this case, we are working with a DDoS DNS
attack. The NDT will replicate the network of the UMU testbed, which is the one acting as the
real environment.

The IBI will communicate to the Impact Analysis DT through the Model Translator, which will
translate the intents coming and then will enforce the necessary action into the DT
environment. The DT will run the simulation and the results will be given back to the IBI also
going through the Model Translator, which will transform the result into a suitable format for
the IBI. Following this workflow, the IBI will be able to estimate the impact that the mitigation
will have and later it can decide whether the action will be applied on the real network.

Table 6 shows the components and interfaces involved in this demo. it is a bidirectional
interface between the Model Translator and the IBI: first one (10.7) to receive the intents from
the IBI and the second one (7.10) to send back the results from the Digital Twin.

Integration Endpoints Responsible For Data Type & Protocol

ID CompA CompB CompA CompB

10.7 IBI
IA-DT - Model
Translator

TUBS TID JSON over HTTP/REST API

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 43 of 66 © 2023-2025 HORSE

7.6
IA-DT Model
Translator

Impact Analysis
DT

UMU TID -

6.7
Impact
Analysis DT

IA-DT Model
Translator

TID UMU -

7.10
IA-DT Model
Translator

IBI TID TUBS JSON over HTTP/REST API

Table 6: HORSE components integration endpoints - Demonstrator 2

Associated to this demonstration we also have an integration test. This integration test,
described in Table 7, includes the interface between the IBI and the IA-DT Model Translator
to check that the intents correctly arrive to the Model Translator and following the execution it
also checks if the response from the DT comes back to the IBI.

Interactions Test Description Result Status

ID CompA CompB

10.7 IBI
Impact
Analysis
DT

Check that IBI what-if intents
arrive to the Model
Translator of the DT

Data is in the
Model
Translator

 In progress

7.10
Impact
Analysis DT

IBI
Check that the response of
the DT arrives to the IBI.

Data is in the
IBI

 In progress

Table 7: HORSE framework interactions testing - Demonstrator 2

The main innovation behind this demonstration is the what-if loop between the IBI and the IA-
DT. It allows us to test and estimate the impact in advance of mitigation actions and
(re)configuration of network elements. By this loop, the real network will not suffer any
inconvenience as all the modifications can be done previously in the IA-DE and we can
estimate the impact that the action will have in the real environment.

4.3 Enforcement of Mitigation Actions over a Multi-domain
Infrastructure

The Demo showcases the workflow of mitigating an attack after the HORSE Context detects
an anomaly in the infrastructure. To achieve that goal, the IBI component will receive the
notification of the threat detection, and a high-level intent to mitigate the detected threat. The
IBI in its turn, will process the intent and convert it to policies that should be enforced in the
infrastructure to mitigate the threat or the attack. The process involves some steps, aiming to
show:

• IBI: The IBI receives high-level intents from the detection mechanisms and converts them
into policies that will be applied to the infrastructure. The translation of the mitigation

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 44 of 66 © 2023-2025 HORSE

intents into policies also considers the network operator's intents about services in the
network, therefore proposing policies that try to fulfill both intents. After the translation
process, the policies are sent to the RTR module.

• RTR: Receives the policies from the IBI, interprets it, and produces an Ansible playbook.
This playbook contains the tasks needed to configure HORSE’s topology and is then
forwarded to the ePEM.

• ePEM: Decide If the ansible playbook is applied directly on the infrastructure or forward
this action to DOC module in order to apply in a multicluster environment.

• DOC: Covert the JSON received via Northbound interface in a particular data model
provided by owner of each multicluster testbed. The DOC module is an abstract layer
between Horse Context and the different types of multicluster manager and orchestrators.
The DOC responds with the status of each action to allow hierarchically higher horse
components to know the status of each mitigation.

This whole interactions between different components in this particular demonstrator are
shown in Figure 7 below.

Figure 7: Demonstrator 3 Workflow

The interactions involved in the workflow of converting a high-level intent into a particular
command or policy and the corresponded interfaces are shown in Table 8.

Integration Endpoints Responsible For Data Type & Protocol

ID CompA CompB CompA CompB

10.11 IBI RTR TUBS 8BELLS JSON over HTTP/REST API

11.12 RTR ePEM 8BELLS CNIT YAML over HTTP/ REST API

12.13 ePEM DOC CNIT ATOS JSON over HTTP/ REST API

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 45 of 66 © 2023-2025 HORSE

13.16 DOC Infrastructure ATOS UMU XML over HTTP/ REST API

Table 8: HORSE components integration endpoints - Demonstrator 3

Finally, associated with this Demonstration we developed some integration tests to verify the
successful behavior between each pair of components in an isolated way. The tests are listed
in Table 9.

Interactions Test Description Result Status

ID CompA CompB

10.11 IBI RTR

Check if the RTR is able
acknowledge the receiving
of the policy sent over the
REST API

An HTTP
code
response
equals to
200.

In Progress

11.12 RTR ePEM

Check if the ePEM is able to
receive and enforce the
Ansible playbook formed
based on IBI’s policy.

An HTTP
code
response
equals to 202

In Progress

12.13 ePEM DOC

Check if DOC is able to map
mitigation action into a
certain way to enforce
actions and response status
of it.

DOC
enforces
mitigation
action

In Progress

13.16 DOC Infrastructure

Check if DOC and
infrastructure are able to
enforce mitigation action.

Infrastructure
is deployed in
different
locations and
mitigations
are applied

In Progress

Table 9: HORSE framework interactions testing - Demonstrator 3

Specifically, this demonstrator will apply actions to mitigate DDoS DNS attacks in the network.
The attacks in this demonstrator are simulated since the main goal is to analyze how HORSE
architecture react after the detection of an attack.

This demonstrator is executed in the UMU Testbed whose infrastructure provide a multi-cluster
environment managed by Liqo with a 5G core network based on Open5GS and DNS servers
running with ISC BIND9 DNS server [5]. Each cluster is deployed in a different geographical
position as shown in Figure 8.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 46 of 66 © 2023-2025 HORSE

Figure 8: Deployment of the demonstrator in a mutli-cluster environment on the UMU Testbed

This demo closes the loop in the HORSE context with the enforcement of a mitigation action
in different geographical position and testbed technologies in a dynamically way, combining
high-level intents with each particular way to apply actions in each technology.

4.4 Prediction of Attacks using a Network Digital Twin

This demo showcases the capabilities of prediction of anomalies and security attacks of the
HORSE platform. The prediction is based on the usage of the P&P NDT.

In this demo, the P&P NDT will be triggered by the EM module, requesting to analyze the
current system status and to perform predictions on specific types of attacks, provided in the
input by the EM component and describing which modules and scenario parameters to predict.
The P&P NDT will acquire the current snapshot of the state and traffic flows in the physical
twin of the 6G Network via the Common Knowledge Base (cKB), perform the requested
analysis and provide an input to the DTE to inform whether a threat is predicted and its related
probability of occurrence.

The simulated attack will be the DDoS, and the reference testbed environment in the first phase
will be CNIT testbed.

Involved components include:

• cKB - Common Knowledge Base module will provide context, setup and real time traffic
on the HORSE testbed (representing the Network Physical Twin).

• EM - Early Modeling module will trigger the P&P NDT module by providing specifications
of the attacks to detect, the potential recipients, and the related setup parameters to
monitor (e.g. unusual computational load, sharp input traffic increase, anomalies in the
control plane signaling).

• P&P NDT - Prediction & Prevention Network Digital Twin will replicate the status of the
physical network infrastructure and running services, and it will provide predictions about
the near future potential anomalies and attacks. The module will be capable of accurately
replicating traffic flows, actual services behavior and related traffic, and to generate traces
for further processing – if required. In this first validation phase, synchronization between
physical and digital twin will be performed during the triggering phase, while in the final

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 47 of 66 © 2023-2025 HORSE

validation it will be capable of periodically re-synchronize its status if most recent data will
be available.

• DTE - Distributed Trustable AI Engine is not directly affected, but the P&P NDT will
generate an output compatible with its input interface, ready for the full integration of the
HORSE architecture.

The innovations presented in the demo are the following:

• First “real time” implementation of a 5G/6G NDT

• Traffic mirroring between Physical and Digital Twin of the network

• Threat modelling and prediction in a DT environment

• Network state estimation and real-time synchronization

 The workflow of the demonstrator is described in Figure 9, while the interfaces between
components of this demonstrator are listed in Table 10, and its associated tests in Table 11.

Figure 9: Demonstrator 4 Workflow

Integration Endpoints Responsible For Data Type & Protocol

ID CompA CompB CompA CompB

8.5 EM Prediction &
Prevention DT

UPC CNIT XML over HTTP

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 48 of 66 © 2023-2025 HORSE

5.15 Prediction &
Prevention
DT

cKB
CNIT 8BELLS

Different files: topology xml file,
PCAP network traffic

5.4 Prediction &
Prevention
DT

DTE
CNIT NKUA JSON over HTTP

Table 10: HORSE components integration endpoints – Demonstrator 4

Interactions Test Description Result Status

ID CompA CompB

8.5 EM Prediction
&
Prevention
DT

Check that the required
threat model instance is
transferred to the Prediction
& Prevention DT.

The threat
model
instance is
available at
the Prediction
& Prevention
DT.

Completed

5.15 Prediction &
Prevention
DT

cKB The P&P NDT acquires the
network topology, service
topology, 5G setup and most
recent traffic flows

The P&P NDT
self-
configures
itself and it
ready to
perform
predictions

Completed

5.4 Prediction &
Prevention
DT

DTE The P&P NDT sends to the
DTE an estimate of the
potential security attack

An HTTP
message
containing the
XML
specifications
of the
predicted
attack are
generated
consistently
with the
interface
between
DEME and
DTE

Completed

Table 11: HORSE framework interactions testing - Demonstrator 4

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 49 of 66 © 2023-2025 HORSE

4.5 Using the Distributed Trustable Engine to detect PFCP
attacks

This demo showcases the detection and mitigation of attacks on the N4 interface of the 5G
core network using ML and the DTE processing for creating different types of intents that are
sent to the IBI, in order to implement appropriate mitigation and prevention measures. This
process involves various steps, aiming to show: 1) the DEME-DTE API where ML attack
detection and classification results are given as input to the DTE, 2) the DTE processing of this
information and creation of intents, and 3) the DTE-IBI API where these intents are forwarded
to the IBI. The demo includes three steps, which are highlighted in Figure 10.

Figure 10: The three-step process of the PFCP attack demonstrator

More specifically, these steps are given in detail below:

• Step 1 - Execution of PFCP attacks: To create a realistic threat environment, this demo
employs Scapy [6], a Python-based packet manipulation tool, to simulate various types of
attacks on the N4 interface. A script is developed to prompt a malicious Session
Management Function (SMF) to randomly execute an attack every X minutes, where X is
a random number between 1 and 30 minutes. In greater detail, the following types of
attacks are simulated:

– Unauthorized PFCP Session Modification Request: For this scenario, the adversary aims to
manipulate the UPF to discard packet handling settings. The malicious user achieves this by
sending a PFCP Session Modification Request that includes a DROP flag in the Apply Action
field of the FAR rules. This action results in the deletion of the Tunnel Endpoint Identifier (TEID)
and the IP address of the gNB from the UPF. Consequently, while the connection between the
UE and the gNB remains active, the client is unable to access the data network (DN).

– Unauthorized PFCP Session Deletion Request: This attack sends unauthorized PFCP session
deletion requests from the SMF to the UPF, aiming to disconnect a specific UE from the DN
without disrupting its connection to the 5G Radio Access Network (RAN) or Core Network (CN).
It targets PDU sessions on the N4 interface, affecting connectivity observed on the N3 interface.
The only remedy for the affected UE is to restart its session or connect to another gNB, which
generates a new SEID, halting the attack's effect.

– Unauthorized PFCP Session Establishment: This attack is instantiated from the SMF of the 5G
CN. The target of this attack is the UPF, which handles processes and forwards user data to the
DN. The goal of this attack is the exhaustion of the UPF’s resources to handle legitimate Session
Establishment Requests and Heartbeat Requests. This will potentially hinder the capability of
the 5G CN to successfully formulate new PDU sessions between clients and DN.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 50 of 66 © 2023-2025 HORSE

• Step 2 - Data collection and monitoring: In order to monitor and analyze the network
operation and data traffic, two tools are mainly used:

– Wireshark, a network protocol analyzer, capturing network traffic and generating datasets with
the proper features that are exploited to update the ML model stored in BentoML.

– Prometheus, an open-source monitoring and alerting toolkit, acquiring logs from various NFs,
such as the AMF, SMF, and UPF.

• Step 3 - ML Models performance improvement: The next step focuses on using the
captured datasets to improve the performance of ML models. The datasets generated by
Wireshark are used to enhance the detection and classification of the ML models deployed
via BentoML. These models are continuously updated with new data collected from the
test-bed, ensuring their adaptation to evolving threat patterns and achieving high detection
rates.

4.5.1 Testbed and Context Environment

Figure 11: Test-bed architecture for the PFCP attacks demonstrator

This demo is executed in a fully operational 5G CN and RAN environment, based on Open5GS
and UERANSIM. The system is entirely containerized using Docker, thus ensuring scalability,
modularity, and easy deployment. The overall architecture is shown in Figure 11. In addition,
this setup includes a user-friendly WebUI for UE registration and configuration, along with
advanced network monitoring and ML tools, i.e. Prometheus, Wireshark, and BentoML. In this
way, the developed demo environment allows testing, development, and validation of the
DEME-DTE and DTE-IBI APIs and interactions, mainly focusing on the use of ML capabilities
and the creation of appropriate mitigation and prevention intents. More specifically, below the
different tools and frameworks used in the demonstrator and their corresponding role is
discussed:

• Open5GS: An open-source project providing a complete 5G core network, including the
AMF, SMF, and UPF. Open5GS forms the backbone of our 5G core network, enabling
comprehensive network functionalities and services. Open5GS also provides a useful
WebUI to register/deregister network users.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 51 of 66 © 2023-2025 HORSE

• UERANSIM: A robust UE and RAN simulator that interacts with the 5G CN. UERANSIM
provides a realistic simulation environment for testing and development, allowing the
evaluation of the network's performance and different security measures under varying
numbers of UEs.

• Docker: The entire 5G CN and RAN are containerized using Docker, ensuring a modular,
scalable, and easily deployable infrastructure. This approach simplifies the management
and orchestration of NFs, facilitating updates and maintenance to accommodate more
complex attack scenarios and corresponding intents.

• BentoML: This platform is utilized for storing, deploying, and managing ML models. In this
demonstrator, BentoML plays a crucial role in the deployment of models designed for
attack detection and classification, enhancing the security and reliability of the network.
BentoML Utilizes an easy-to-use API in order to serve and output the inference results.

• Prometheus: An open-source monitoring and alerting toolkit, enabling the collection and
monitoring of various metrics from all NFs within the 5G core network. Prometheus
enables real-time visibility into the network's performance and health, facilitating proactive
management and troubleshooting.

• Wireshark: A powerful network protocol analyzer employed for monitoring network traffic,
creating datasets, and updating ML models. Wireshark's capabilities enable detailed
inspection and analysis of the data traffic in the network, providing valuable insights for
improving network performance and security.

4.5.2 Innovations Presented in the Demo

This demo provides an efficient way to simulate PFCP attacks on the 5G core networks and
showcases how ML-based attack detection and classification is leveraged by the DTE to create
proper intents. At this stage, the following innovations are provided:

• Integration of ML capabilities, deployed through BentoML to detect and classify PFCP
attacks in the 5G core network in real-time, enhancing the network's responsiveness to
threats. At the initial implementation of DTE for IT-1, classification models have been used
to identify network anomalies. However, deep reinforcement learning (DRL) approaches
will also be integrated in DTE in the next iteration, to leverage more dynamic responses
and real time updates on the adopted mitigation strategies.

• Adoption of intent-based networking principles for dynamic and adaptive network
configurations to mitigate attacks. In this respect, the DTE creates two types of intents:

– Mitigative intents, describing objectives that should be accomplished in the short term (e.g.,
within a few seconds) to reduce the impact of ongoing security incidents. For instance, an intent
can recommend to “Mitigate PFCP Session Deletion attack against UPF X” with the following
requirements: “SMF downtime less than 1 sec, rate of PFCP Session Deletion requests reaching
UPF X equal to 0”. In this case, the mitigation could be supported by configuring a firewall to
drop all PFCP Session Deletion requests.

– Preventive Intents, describing objectives that should be achieved in the longer term to ensure
protection against future potential threats. For example, an intent can advise to “Prevent all
PFCP-related attacks against UPF with the following requirement: “SMF downtime less than 150
sec” could be supported by checking the integrity of the SMF and, if found compromised,
redeploying the SMF, creating a new slice, or deploying a new core network.

The complete workflow of the demonstrator is depicted in Figure 12 below while the interfaces
and associated tests are listed in Table 12 and Table 13 respectively.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 52 of 66 © 2023-2025 HORSE

Figure 12: Demonstrator 5 Workflow

Integration Endpoints Responsible For Data Type & Protocol

ID CompA CompB CompA CompB

2.3
Pre-
processing

DEME 8BELLS NKUA JSON over HTTP/REST API

3.4 DEME DTE NKUA NKUA
PCAP, JSON over HTTP/REST
API

4.10 DTE IBI NKUA TUBS JSON over HTTP/REST API

10.15 IBI KB TUBS MAR JSON over HTTP/REST API

Table 12: HORSE components integration endpoints - Demonstrator 5

Interactions Test Description Result Status

ID CompA CompB

2.3
Pre-
processing

DEME

Check that the collected data
(PCAP files and logs) are
processed and transferred to
the DEME module.

The collected
and
processed
data (PCAP
files and logs)

 In progress.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 53 of 66 © 2023-2025 HORSE

 is available at
the DEME
module.

3.4 DEME DTE

Check if the DTE correctly
receives the DEME’s
detection data, being sent
over the REST API

PCAP, JSON
over
HTTP/REST
API

 In progress.

4.15 DTE IBI

Check if the IBI can correctly
receive security intents
regarding the detected attack
from DTE

An HTTP
response with
code 200 to
acknowledge
the reception
of the intent.

 In progress

15.4 IBI KB
Check if the IBI can correctly
receive mitigation lists given
the detected attack

JSON over
HTTP/REST
API

In progress

Table 13: HORSE framework interactions testing - Demonstrator 5

4.6 Compliance Matrix for HORSE Iteration IT-1

In this section we offer the compliance matrix (see Table 14) that relates the requirements
listed in D2.1 HORSE Landscape: Technologies, State of the Art, AI Policies and
Requirements [1] versus the validation tests and demonstrators detailed in previous sections
and executed in the first phase.

Requirement Comment Covered in
Demonstrator #

Status

REQ-F-03 Auditing of messages
of IBI module will is
optional and will be
covered in IT-2

 Optional/Pending
for IT-2

REQ-F-12 Based on latest
adjustments in the
architecture RTR is
not responsible for
detecting or
determining the
nature of the attack.
The requirement is
optional, and it needs
to be updated in IT-2

 Not covered.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 54 of 66 © 2023-2025 HORSE

REQ-F-13 Reconfiguration of the
network to mitigate
attacks is already
covered by the
HORSE pipeline

Demonstrator 1 and
Demonstrator 5

Covered

REQ-F-14 The horse platform
has implemented a
methodology for the
prediction of an attack

Demonstrator 4 Covered

REQ-F-15 RTR is able to
generate enforcement
policies that can
change the
configuration of the
network
infrastructure.

Demonstrator 3 Covered

REQ-F-16 The Impact Analysis
Digital Twin enables
the HORSE
components to test
configuration before
its deployment.
However, the EM is
not responsible for
testing and evaluating
configurations. The
requirement needs to
be updated.

 Covered

REQ-F-17 Persistence of
information is already
implemented in the
IBI component by
storing the security
and QoS intents in an
internal knowledge
base

Demonstrator 2,
Demonstrator 3 and
Demonstrator 5

Covered

REQ-F-18 The decisions
internally taken by the
IBI module are shown
through a
GUI/Dashboard

Demonstrator 2,
Demonstrator 3 and
Demonstrator 5

Covered

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 55 of 66 © 2023-2025 HORSE

REQ-F-20 The HORSE platform
should identify and
model the 6G
components. The
requirement is
optional and could be
implemented in IT-2

 Partially covered

REQ-F-21 The HORSE platform
must be able to model
the attack

 Demonstrator 4 Covered

REQ-F-23 Some components
can define access
policies, but they are
not enforced in real-
time in our current
demonstrators. Not all
components
implement access
policies. This wills. To
be extended in IT-2.

 Partially covered

REQ-F-25 Some components
can define access
policies, but they are
not enforced in real-
time in our current
demonstrators. Not all
components
implement access
policies. This wills. To
be extended in IT-2.

 Partially covered

REQ-F-26 The RTR is able to
provide mitigation
action and
enforcement policies
that can be applied in
the network systems.

Demonstrator 3 Covered

REQ-F-27 The user can check
the reconfigurations
and policies proposed
by the IBI in the
internal
GUI/Dashboard.

Demonstrator 2,
Demonstrator 3,
Demonstrator 4 and
Demonstrator 5

Partially covered

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 56 of 66 © 2023-2025 HORSE

EM provides an XML
file with a list of
mitigation actions to
mitigate or avoid an
attack

REQ-F-29 Covered by all
modules composing
the workflow. The
RTR is able to
generate network
configuration policies.
The enforcement of
the policies is covered
by the ePEM and the
DOC modules.

Demonstrator 2,
Demonstrator 3 and
Demonstrator 5

Covered

REQ-F-31 The HORSE platform
should use
anonymized data to
train AI model to
detect threats and
attacks

Demonstrator 1 and
Demonstrator 5

 Covered

REQ-F-32

The DTE module can
output intents and
alarms based on
AI/ML to protect the
system against
potential attacks

Demonstrator 1 and
Demonstrator 5

 Partially covered

REQ-F-33 The HORSE Digital
Twin should be able
to consistently repeat
specific experiments,
and to incorporate
controlled variations
to experiments
execution as
requested by its
users.

Demonstrator 2 and
Demonstrator 4

Covered

REQ-F-34 The HORSE Digital
Twin should be
capable of deploying
different network
functions to test them
independently or to

Demonstrator 2 and
Demonstrator 4

Covered

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 57 of 66 © 2023-2025 HORSE

model whole
functionality sets or
planes as a single
entity, according to
specific experiment.

REQ-F-35 The anonymization
can be performed, but
it is not yet executed
on the datasets.

 Partially covered

REQ-F-36 The HORSE platform
must support end-to-
end data encryption
for data in transit

 Not implemented

REQ-F-37 The HORSE platform
should allow the user
to monitor the status
(successful or failed
execution) and view
an incident summary
of all AI pipelines

 Not implemented

REQ-F-38 The data retention
policies can be
defined but are not
enforced in real-time
on collected datasets

 Partially covered

Table 14: Compliance matrix between the functional requirements and functional validation

As Table 14 shows, the validation is fully covering 12 of the 44 (27%) requirements in the
validation phase 1 of the first iteration of the HORSE Project, while 19 of 44 (43%)
requirements are addressed when considering the ones partially addressed or implemented.
We expect to increase this percentage in the second iteration and incorporate the validation of
some performance requirements in the validation scenarios and the two general use cases of
the project, namely light metro communications case and immersive media case.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 58 of 66 © 2023-2025 HORSE

5 Conclusion

The HORSE project has completed its first iteration, integrating various components to form a
cohesive cybersecurity platform for 5G/6G networks. This milestone marks a significant step
in developing a robust solution that addresses cybersecurity challenges in next-generation
networks.

On the one hand, the development and integration process of the HORSE components
revealed critical insights into the system's architecture, highlighting areas that require updates
and improvements. On the other hand, despite the intrinsic complexity of integrating diverse
modules, the adoption of a Continuous Integration/Continuous Deployment (CI/CD) approach
allowed us to manage the process effectively, preparing the HORSE platform to run five
demonstrators and allowing the functional validation of the components.

Moving forward, the next steps in the HORSE development will involve addressing the
identified updates in the architecture and incorporating functionalities in the components that
will address the identified pending requirements.

Future updates and enhancements will be guided by the work carried out in Work Package 2
(WP2), a strategic move that ensures the HORSE architecture evolves to meet the dynamic
needs of cybersecurity in 5G/6G networks. The ongoing collaboration and rigorous validation
efforts will continue to propel the project toward its goal of delivering a comprehensive and
effective cybersecurity solution. Overall, the progress made in this first release sets a solid
foundation for future developments, promising continued advancements and innovations in the
HORSE project.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 59 of 66 © 2023-2025 HORSE

6 References

[1] HORSE Project, “D2.1 HORSE Landscape: Technologies, State of the Art, AI Policies and
Requirements”. June 2023. Available at: https://www.horse-6g.eu/?wpdmdl=491&ind=1698663024683,
Retrieved on 23/06/2024.

[2] HORSE Project, “D2.2 HORSE Architectural Design (IT-1)”. June 2023. Available at:
https://www.horse-6g.eu/?wpdmdl=492&ind=1698663068817, Retrieved on 23/06/2024.

[3] H. Krekel, B. Oliveira, R. Pfannschmidt, F.Bruynooghe, B. Laugher, F. Bruhin, 2004, Available at:
https://www.pytest.org/en/8.2.x/, Retrieved on 23/06/2024.

[4] University of Stuttgart, “The Design Structure Matrix (DMS) home page”, Available at:
https://dsmweb.org/introduction-to-dsm/, Retrieved on 24/11/2023.

[5] Internet Systems Consortium, “Bind 9”, Available at: https://www.isc.org/bind/. Retrieved on
23/06/2024.

[6] R. R. S, R. R, M. Moharir and S. G, "SCAPY- A powerful interactive packet manipulation program,"
2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), Bangalore,
India, 2018.

https://www.horse-6g.eu/?wpdmdl=491&ind=1698663024683
https://www.horse-6g.eu/?wpdmdl=492&ind=1698663068817
https://www.pytest.org/en/8.2.x/
https://www.isc.org/bind/

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 60 of 66 © 2023-2025 HORSE

Annex A

First Thoughts on General KPIs

As mentioned in the previous deliverable D5.1, the validation of the IT-1 HORSE release will
be supported by demonstrations and functional tests assuring that all developed modules and
all developed components are properly designed and properly integrated, in accordance with
what has been specified. However, for the second Intermediate release (IT-2), it is defined that
the validation phase will cover technical requirements and the KPI analysis and definition has
been performed in the scope of the WP5 activities.

Several Indicators were investigated and the evaluation of the HORSE platform’s performance,
will be measured using the following KPI’s:

• Impact on the performance of the HORSE platform

• Detection Rate/True Positive Rate

• Mean Time to Detect (a specific attack) - MTTD

• Mean Time to React (to a specific attack) - MTTR

• Time to deactivate the mitigation action

KPI’s definition

• Impact on the performance of the HORSE platform: Some measurements (latency and
bandwidth) must be performed to verify the behavior of the network when the HORSE
modules are running (activated) or not running (de-activated). This will lead to a better
perception if there is a network degradation in the presence of HORSE modules activities.

• Detection Rate (DR) is also called True Positive Rate (TPR) - Is the ratio between the
number of correctly predicted attacks (positive) and the total number of attacks. The Date
Rate can be expressed mathematically as

𝐷𝑅 =
TP

TP+FN
,

where TP is the number of correctly predicted attacks, and FN is the number of
observations that are predicted as normal but are attacks.

• MTTD: For each attack being tested the time to detect the alarm must be measured and
registered. Quick detection reduces the window of exposure.

• MTTR: For each attack being tested, the time to activate the mitigation actions must be
measured and registered. Rapid response is crucial to mitigate damage. It must also be
measured the time to generate an external alarm. This alarm should be generated to
ensure that the Operation Control and Security Centers are aware of an eventual intrusion
in the system.

• Time to deactivate the mitigation action- For each attack being tested the time to
deactivate the mitigation actions must be measured and registered (if it is considered that
the attack is not present in the system)

A best possible balance among these KPI’s will lead to an effective cybersecurity solution. For
instance, no mitigation action can be effective if the network is already in chaos, motivated by
a late detection of an attack.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 61 of 66 © 2023-2025 HORSE

Therefore, evaluating these metrics collectively, is crucial for crafting a practical and effective
solution, allowing fine-tunning and further improvements during the life cycle of HORSE
project.

References

• A. Alhomoud, R. Munir, J. P. Disso, “Performance Evaluation Study of Intrusion
Detection Systems”, Procedia Computer Science, 2022. DOI:
https://doi.org/10.1016/j.procs.2011.07.024.

• Saylor Academy, “Intrusion Detection Systems”, CS406: Information Security. Available
at: https://learn.saylor.org/mod/book/view.php?id=29755&chapterid=5439.

• V. Ford, A. Siraj. "Applications of machine learning in cyber security", Proceedings of the
27th international conference on computer applications in industry and engineering.
Available at:
https://www.researchgate.net/publication/283083699_Applications_of_Machine_Learnin
g_in_Cyber_Security

• T. Subbulakshmi, S. M. Shalinie, and A. Ramamoorthi, “Detection and Classification of
DDoS Attacks using Machine Learning Algorithms”, European Journal of Scientific
Research, 2010.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 62 of 66 © 2023-2025 HORSE

Annex B

This annex provides a detailed guide for configuring authentication tokes and secrets in GitHub to
enable developers to build container images of the HORSE components and the proper functioning
of integration tests.

6.1 GHCR_TOKEN

Authentication token for the GitHub Container Registry. This token allows to log in to the
container registry and perform operations such as pushing Docker images. Unlike the following
three variables, this one is not created as described in the "How to Add Secrets" section, which
is intended for repository secrets, but is created at the GitHub user level. Detailed steps are
explained below to get the token value: After getting the token value, it is needed to create a
new repository secret.

1. Go to the organization Settings:

2. Go to the Developer settings:

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 63 of 66 © 2023-2025 HORSE

3. Select Tokens (classic) in the Personal access tokens section:

4. Select Generate new token (classic) in the Generate new token section:

5. Add a Note and Select the necessary scopes:

6. Generate token:

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 64 of 66 © 2023-2025 HORSE

7. After that, the token value will be shown. It is recommended to save it for its use when
creating a new repository secret.

6.2 Configure a new repository secret.

1. Go to the repository Settings:

2. Select Actions in the Secrets and variables section:

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 65 of 66 © 2023-2025 HORSE

3. Click on New repository secret:

4. Use the desired value for the variable:

6.2.1 GHCR_URL

URL of the GitHub Container Registry. This URL specifies the endpoint of the container registry
where the Docker images will be stored. It is used along with the token and username to
establish the connection.

HORSE Project - D5.2: First HORSE Release: HORSE IT-1 version

 Page 66 of 66 © 2023-2025 HORSE

6.2.2 GHCR_IMAGE

Name and tag of the Docker image that will be built and published. This secret defines how
the Docker image will be tagged during the build process when pushed to the registry.

